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Abstract. The paper proposes a unified description of hypertopologies, i.e. topologies on the non-
empty closed subsets of a topological space, based on the notion of approach spaces introduced
by R. Lowen. As a special case of this description we obtain the abstract hit-and-miss, proximal
hit-and-miss and a big portion of weak hypertopologies generated by gap and excess functionals
(including the Wijsman topology and the finite Hausdorff topology), respectively. We also give char-
acterizations of separation axiomsT0, T1, T2, T3 and complete regularity as well as of metrizability
of hypertopologies in this general setting requiring no additional conditions. All this is done to
provide a background for proving the main results in Section 4, where we apply topological games
(the Banach–Mazur and the strong Choquet game, respectively) to establish various properties of
hypertopologies; in particular we characterize Polishness of hypertopologies in this general setting.
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0. Introduction

There has been an impressive growth in the number of recently introduced topolo-
gies on thehyperspace(i.e. the collection of all nonempty closed subsets) CL(X) of
a topological space(X, τ) (see [3] for a survey). This increasing interest is owing
to usefulness of these so-calledhypertopologiesin different fields of application
(such as probability, statistics or variational problems, for instance). It also ex-
plains the effort in understanding their structure, common features and general
patterns in order to find a common description for them. The papers [4, 41, 42]
or more recently [35], are partially or completely devoted to this goal, offering
various possibilities of generalization. Let us also mention the paper [34], where
the notion ofapproach spaceswas first applied in the hyperspace setting to pro-
vide a new description of some important hyperspace topologies. It is one of the
purposes of our paper to give another description of hyperspace topologies based
on approach spaces (cf. [31, 32]). In order to explain the nature of our description,
let us first describe the topologies we are going to deal with: forE ⊂ X write
E− = {A ∈ CL(X) : A ∩ E 6= ∅}, E+ = {A ∈ CL(X) : A ⊂ E}; further if
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188 L. ZSILINSZKY

(X,U) is a uniform space, putE++ = {A ∈ CL(X) : ∃U ∈ U with U [A] ⊂ E},
whereU [A] = {x ∈ X : ∃a ∈ A with (x, a) ∈ U }. There are three types of
hypertopologies which include most of the studied topologies: thehit-and-miss,
the proximal hit-and-missand theweak topologies generated by gap and excess
functionalson CL(X), respectively.

The abstract hit-and-miss topology on CL(X) has as a subbase all sets of the
form V −, whereV is an arbitrary open subset ofX plus all sets of the form(Bc)+,
whereBc = X \ B andB ranges over a fixed nonempty subfamily1 ⊂ CL(X). It
was first studied in [39, 40] and then also in [3, 8, 9, 15, 24, 46, 47, 48]; the well-
known prototypes of hit-and-miss topologies are theVietoris topology, with 1 =
CL(X) ([3, 30, 37]) and theFell topology, with 1 = nonempty closed compact
subsets ofX ([3, 19, 30]).

If (X,U) is a uniform space and(Bc)+ is replaced by(Bc)++ in the above def-
inition, we get the proximal hit-and-miss topology or hit-and-far topology, studied
in [3, 8, 9, 15, 16] and [48], for instance; among its useful prototypes we can find
the proximal topology, with 1 = CL(X) ([5, 17]) or theball-proximal topology,
with 1 = closed proper balls in a metric spaceX ([11, 25, 48]).

In a metric space(X, d) define thedistancefunctional

d(x,A) = inf
a∈A

d(x, a) (x ∈ X,∅ 6= A ⊂ X),

thegap functional

D(A,B) = inf
a∈Ad(a, B) (A,B ⊂ X),

and theexcessfunctional

e(A,B) = sup
a∈A

d(a, B) (A,B ⊂ X).

Then the so-calledweak hypertopologiesor initial topologies on CL(X) are de-
fined as the weak topologies generated by gap (in particular distance) and excess
functionals, where one of the set arguments ofD(A,B) ande(A,B), respectively
ranges over given subfamilies of CL(X). A good reference about these topologies
is [3, 4, 26] or [49]. As a prototype of weak hypertopologies we should mention
theWijsman topology, which is the weak topology generated by the distance func-
tionals viewed as functionals of set argument ([2, 3, 12, 13, 20, 25, 48, 50]); it is a
fundamental tool in the construction of the lattice of hyperspace topologies, as most
of the above and many other known topologies arise as suprema and infima, respec-
tively of appropriate Wijsman topologies ([5, 11]). Another weak hypertopology is
thefinite Hausdorff topologywhich is the weak topology on CL(X) generated by
{e(F, ·) : F ⊂ X,F finite} ∪ {e(·, F ) : F ⊂ X,F finite} ([3, 26, 50]); the finite
Hausdorff topology – as well as the Wijsman topology – is measurably compatible
on CL(X), i.e. its Borel field coincides with the Effrosσ -algebra ([3]). Finally,
we should at least mention two more important weak hypertopologies, namely the
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TOPOLOGICAL GAMES AND HYPERSPACE TOPOLOGIES 189

Hausdorff metric topologyand theAttouch–Wetts topology([3]); they however fail
to follow the pattern this paper investigates.

In Section 1 of the paper we introduce approach spaces and some other notions
needed for the following exposition.

In Section 2 we present a formulation based on the notion of approach spaces,
which includes as a special case the abstract hit-and-miss, the proximal hit-and-
miss and a big portion of weak hypertopologies (including the Wijsman topology
and the finite Hausdorff topology), respectively. One of the advantages of this ap-
proach is that it borrows a ‘metric-like’ quality to the definitions and it may provide
a framework where it is easier to come up with results about hypertopologies just
by mimicking the results and proofs known for the weak hypertopologies.

In Section 3 we give characterizations of separation axiomsT0, T1, T2, T3 and
of complete regularity as well as of metrizability in this general setting using
techniques and ideas from [15] and [47].

All this is done to provide a background for proving the main results of the
paper in Section 4, where we apply topological games, such as the Banach–Mazur
and the strong Choquet game, respectively ([10] or [27]) to investigate properties
of hypertopologies; in particular, we characterize Polishness of hypertopologies in
this general setting, much in the spirit of [50]. The reason why topological games
seem to work well on hyperspaces, and make proofs simpler is that they require the
knowledge of basic open sets only, which are the best known and sometimes the
only objects to work with, in hypertopologies.

Finally, in Section 5, we ‘translate’ the general results to get the pertinent ap-
plications for (proximal) hit-and-miss and various weak hypertopologies, thus ob-
taining new results on Polishness of hypertopologies, as well as extending old ones
(e.g. [26, 49, 50]).

1. Distances, Gaps and Excesses

Throughout the paperω stands for the non-negative integers,P (X) for the power
set ofX andEc for the complement ofE ⊂ X inX, respectively. Iff is a function
andE is a set thenf→(E) (resp.f←(E)) denotes the image (resp. preimage) ofE.

Suppose that(X, δ) is anapproach space(cf. [31, 32]), i.e.X is a nonempty set
andδ: X × P (X) → [0,∞] is a so-calleddistance(onX) having the following
properties:

(D1) ∀x ∈ X: δ(x, {x}) = 0,
(D2) ∀x ∈ X: δ(x,∅) = ∞,
(D3) ∀x ∈ X ∀A,B ⊂ X: δ(x,A ∪ B) = min{δ(x,A), δ(x, B)},
(D4) ∀x ∈ X ∀A ⊂ X ∀ε > 0: δ(x,A) 6 δ(x,Bε(A))+ ε,
where Bε(A) = {x ∈ X : δ(x,A) 6 ε} is the closedε-hull aboutA. Every
approach space(X, δ) generates a topologyτδ onX defined by the closure operator:

Ā = {x ∈ X : δ(x,A) = 0}, A ⊂ X.
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190 L. ZSILINSZKY

The symbol Sε(A) will stand for the ‘open’ε-hull aboutA, which is the set{x ∈
X : δ(x,A) < ε} (the reason for the quotation mark is that while the closed hull is
closed in(X, τδ) as one readily sees from (D4), the ‘open’ hull is not necessarily
open in(X, τδ)).

The functionalD: P (X)× P (X)→ [0,∞] will be called agapprovided:

(G1) ∀A,B ⊂ X : D(A,B) 6 infa∈A δ(a, B),
(G2) ∀x ∈ X ∀A ⊂ X : D({x}, A) = infy∈{x} δ(y,A),
(G3) ∀A,B,C ⊂ X : D(A ∪ B,C) = min{D(A,C),D(B,C)}.

In the sequel (unless otherwise stated)X will stand for an approach space(X, δ)
with a gapD (denoted also as(X, δ,D)).

Examples of Distances

• ([31, 32]) Let(X, τ) be a topological space. Forx ∈ X andA ⊂ X define

δt (x,A) =
{

0, if x ∈ Ā,
∞, if x /∈ Ā.

Thenδt is a distance onX andτ = τδt .
• ([33]) Let (X,U) be a uniform space (see [28]). ThenU is generated by the

family D of uniform pseudo-metrics onX such thatd 6 1 for all d ∈ D and

d1, d2 ∈ D ⇒ max{d1, d2} ∈ D. (1)

Then

δu(x,A) = sup
d∈D

d(x,A), x ∈ X,A ⊂ X

defines a (bounded) distance onX andτδu coincides with the topology induced
by U onX.
• ([31, 32]) Let(X, d) be a metric space. Thenδm(x,A) = d(x,A) is a distance

onX andτδm is the topology generated byd onX.

Examples of Gaps

• For an arbitrary approach space(X, δ)

D(A,B) = inf
a∈A

δ(a, B)

is clearly a gap onX. This is how we are going to define the gapDt (resp.
Dm) in topological (metric) spaces using the relevant distanceδt (resp.δm).
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TOPOLOGICAL GAMES AND HYPERSPACE TOPOLOGIES 191

• Let (X,U) be a uniform space generated by the familyD of uniform pseudo-
metrics onX bounded above by 1. ForA,B ⊂ X define

Du(A,B) = sup
d∈D

inf
a∈A

d(a, B).

ThenDu is a gap onX. Indeed, it is a routine to check (G1), and (G2) follows
from the fact thatDu({x}, A) = δu(x,A) for all x ∈ X,A ⊂ X. Finally, (G3)
is a consequence of (1) and the boundedness ofDu.

Excess Functional

For allA,B ⊂ X define theexcessof A overB by

e(A,B) = sup
a∈A

δ(a, B).

The symbolset , eu, em will stand for the excess in topological, uniform and metric
spaces, respectively defined viaδt , δu, δm. Observe that

(E1) ∀A,B,C ⊂ X : e(A ∪ B,C) = max{e(A,C), e(B,C)},
(E2) ∀B ⊂ X ∀ε > 0 : x ∈ Sε(B)⇒ e({x}, B) < ε.

Indeed, (E1) is straightforward, and for (E2) notice, that ife(A,B) < ε for A,B ⊂
X andε > 0, thenA ⊂ Bε(B) for somer > 0. Hence by closedness of the closed
hull aboutB, we getĀ ⊂ Bε−r(B), soe(Ā, B) < ε.

2. Hyperspace Topologies

In the sequel CL(X) will stand for the nonempty closed subsets of(X, τδ). For
E ⊂ X writeE− = {A ∈ CL(X) : A∩E 6= ∅},E+ = {A ∈ CL(X) : A ⊂ E} and
E++ = {A ∈ CL(X) : D(A,Ec) > 0}. Observe that by (G1)

E++ ⊂ E+ for all E ⊂ X.
In what follows11 ⊂ CL(X) is arbitrary and12 ⊂ CL(X) is such that

∀ε > 0 ∀A ∈ 12⇒ Sε(A) is open inX. (2)

As a matter of fact, condition (2) is quite natural and in the applications (see
Remark 2.1(iv)) it will be satisfied always.

DenoteD = D(11,12) =⋃k∈ω(11∪ {∅})k+1× (12∪ {X})k+1× (0,∞)2k+2.
Whenever referring to someS, T ∈ D in the sequel, we will assume that for some
k, l ∈ ω

S = (S0, . . . , Sk; S̃0, . . . , S̃k; ε0, . . . , εk; ε̃0, . . . , ε̃k),

T = (T0, . . . , Tl; T̃0, . . . , T̃l; η0, . . . , ηl; η̃0, . . . , η̃l ).
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192 L. ZSILINSZKY

ForS ∈ D denote

M(S) =
⋂
i6k
(Bεi (Si))

c ∩ Sε̃i (S̃i) and

S∗ =
⋂
i6k
{A ∈ CL(X) : D(A, Si) > εi ande(A, S̃i) < ε̃i}.

Observe that ifP = (∅;X; ε; ε̃), then

M(P) = X and P ∗ = CL(X).

LEMMA 2.1. LetS ∈ D. Then

(i) S∗ ⊂ M(S)+;
(ii) ∀x ∈M(S) : ((∃t > 0 ∀i 6 k: {x} ∩ Sεi+t (Si) = ∅)⇒ {x} ∈ S∗);

(iii) A ⊂ B ∈ S∗ ⇒ A ∈ S∗.
Proof. (i) If A ∈ S∗ then by (G1),εi < D(A, Si) 6 infx∈A δ(x, Si), soA ⊂

(Bεi (Si))
c for all i 6 k. Further ε̃i > e(A, S̃i) = supx∈A δ(x, S̃i) implies that

A ⊂ Sε̃i (S̃i).
(ii) Use (G2) and (E2).
(iii) Use that by (G3) (resp. (E1))D(A,C) > D(B,C) (resp. e(A,C) 6

e(B,C)) for all C ⊂ X. 2

ForU0, . . . , Un ∈ τδ andS ∈ D denote

(U0, . . . , Un)S =
⋂
i6n
U−i ∩ S∗.

It is easy to see that the collection

B∗ = {(U0, . . . , Un)S : U0, . . . , Un ∈ τδ, S ∈ D, n ∈ ω}
forms a base for a topology on CL(X); denote it byτ ∗.

Remark 2.1.(i) Let (X, τ) be a topological space. Let11 = 1 and12 = {X}.
Then forB ∈ 1 and ε, η > 0, {A ∈ CL(X) : Dt(A,B) > ε} = (Bc)+ and
{A ∈ CL(X) : et(A,X) < η} = CL(X). Thusτ ∗ = τ+ is the generalhit-and-miss
topologyon CL(X).

(ii) Let (X,U) be a uniform space. Let11 = 1 and12 = {X}. Then for
B ∈ 1 andε, η > 0, {A ∈ CL(X) : Du(A,B) > ε} = (Bc)++ and{A ∈ CL(X) :
eu(A,X) < η} = CL(X). Thusτ ∗ = τ++ is theproximal hit-and-miss topology
on CL(X).

(iii) Let (X, d) be a metric space. Let11,12 ⊂ CL(X) be such that11 contains
the singletons. Thenτ ∗ coincides with the weak hypertopologyτweak generated by
gap and excess functionals.
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(iv) Observe that in the above applications, condition (2) is not really restrictive,
since in uniform and metric spaces it is fulfilled for arbitrary12 ⊂ CL(X); further
for the hit-and-miss topology we need only12 = {X} thus, in this setting (2) holds
again.

3. Separation Axioms and Metrizability

We will say thatD is a Urysohn familyprovided wheneverS ∈ D andA ∈ S∗
there existsT ∈ D such thatA ∈ T ∗ andM(T ) ∈ S∗.

FurtherD is aweakly Urysohn familyprovided for allS ∈ D andA ∈ S∗ there
existsT ∈ D such thatA ∈ T ∗ ⊂ S∗ and

∀E countable:E ⊂ M(T ) H⇒ E ∈ S∗. (3)

The familyD is weakly quasi-Urysohnprovided for all∅ 6= (U0, . . . , Un)S ∈ B∗
there is aT ∈ D such that∅ 6= (U0, . . . , Un)T ⊂ (U0, . . . , Un)S andS, T satisfies
(3).

Remark 3.1.(i) If D is a Urysohn family, it is also weakly Urysohn (by Lem-
ma 2.1(iii)); if D is a weakly Urysohn family, it is a weakly quasi-Urysohn family
as well.

(ii) Let (X, τ) ((X,U)) be a topological (uniform) space,12 = {X} and11 =
1. Denote by6(1) the finite unions of members of1 ⊂ CL(X).

If 1 is a (uniformly) Urysohn family(i.e. for all S ∈ 6(1) andA ∈ (Sc)+
(resp.A ∈ (Sc)++) there exists aT ∈ 6(1) with A ⊂ T c ⊂ T c ⊂ Sc (resp.
A ⊂ T c ⊂ U [S]c for someU ∈ U) – cf. [2, 3]), thenDt ( = Du)= D(1, {X}) is a
Urysohn family.

Further, if we will say that1 is a (uniformly) weakly Urysohn familyprovided
for all S ∈ 6(1) andA ∈ (Sc)+ (resp.A ∈ (Sc)++) there exists aT ∈ 6(1) with
A ⊂ T c ⊂ Sc (resp.A ⊂ T c ⊂ U [S]c for someU ∈U) such that

∀E countable:(E ⊂ T c H⇒ E ⊂ Sc)

(resp.E ⊂ U [S]c for someU ∈U), (3′)

thenDt (= Du) is a weakly Urysohn family.
Similarly, if 1 is said to be a (uniformly) weakly quasi-Urysohn familyprovided

wheneverS ∈ 6(1) andUi ∈ τ \ {∅} are disjoint for alli 6 n, there exists
T ∈ 6(1) such thatUi ∩ T c 6= ∅ for all i 6 n, S ⊂ T and (3′) holds, then
Dt (= Du) is a weakly quasi-Urysohn family.

Note that a (uniformly) quasi-Urysohn familyof [48] is a (uniformly) weakly
quasi-Urysohn family.

(iii) If (X, d) is a metric space and11 contains the singletons, thenDm =
D(11,12) is a Urysohn (hence also weakly Urysohn and weakly quasi-Urysohn)
family.
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Indeed, suppose thatS ∈ Dm. ThenA ∈ S∗ impliesDm(A, Si) > εi and
em(A, S̃i ) < ε̃i for all i 6 k. Putηi = εi+Dm(A,Si)

2 andη̃i = ε̃i+em(A,Si)
2 for i 6 k and

defineT = (S0, . . . , Sk; S̃0, . . . , S̃k; η0, . . . , ηk; η̃0, . . . , η̃k). Then clearlyA ∈ T ∗.
Further, if x ∈ M(T ) then d(x, Si) > ηi andd(x, S̃i ) 6 η̃i for all i 6 k, so
Dm(M(T ), Si) > ηi > εi andem(M(T ), S̃i) 6 η̃i < ε̃i for all i 6 k. It means that
M(T ) ∈ S∗.

We will say that(X, δ,D) hasproperty(P) provided

∀x ∈ X ∀k ∈ ω ∀A0, . . . , Ak ∈ CL(X) ∀ε0, . . . , εk > 0 ∃y ∈ {x}:
δ(x,Ai) > εi ⇒ D({y}, Ai) > εi for all i 6 k.

Remark 3.2.(i) Observe that (P) is satisfied in uniform and metric spaces, since
thereδ(x,A) = D({x}, A).

(ii) In a topological space(X, τ), (P) is satisfied iffX is weakly-R0 (see [46,
47]), i.e. for allU ∈ τ and x ∈ U there is ay ∈ {x} with {y} ⊂ U iff each
nonempty difference of open sets contains a nonempty closed set.

The following lemma will play a key role in the next paragraph as it will enable
the transfer of topological games from the base space to the hyperspace.

LEMMA 3.1. Suppose that(X, δ,D) has property(P). Suppose thatU0, . . . , Un,
V0, . . . , Vm ∈ τδ for somem,n ∈ ω andS, T ∈ D.

Then∅ 6= (U0, . . . , Un)S ⊂ (V0, . . . , Vm)T impliesM(S) ⊂ M(T ) and for all
j 6 m there existsi 6 n withM(S) ∩ Ui ⊂ M(T ) ∩ Vj .

Proof. Let A ∈ U = (U0, . . . , Un)S and V = (V0, . . . , Vm)T . Suppose that
there exists anx ∈ M(S) \ M(T ). Then by (P), there existsy ∈ {x} such that
D({y}, Sr) > εr for all r 6 k. Then{y} ∈ S∗, since by (E2) andy ∈ {x} we have
e({y}, S̃r ) 6 e({x}, S̃r ) < ε̃r for all r 6 k.

Furthery /∈ M(T ). Indeed, sincex /∈ M(T ) then eitherx ∈ Bηs (Ts) or x /∈
Sη̃s (T̃s) for somes 6 l. In the first case using closedness of the closed hull we
get thaty ∈ {x} ⊂ Bη̃s (Ts), while in the second case in view of (2),y ∈ {x} ⊂
(Sη̃s (T̃s))

c. Now by (G3) and (E1),A∪{y} ∈ U, but by Lemma 2.1(i),A∪{y} /∈ V
sinceA ∪ {y} /∈ M(T )+, which is a contradiction.

Suppose that there existsj 6 m such that for alli 6 n we have somexi ∈
Ui ∩M(S) \ Vj ∩M(T ). Then for alli 6 n, δ(xi, U c

i ) > θi for someθi > 0 and
xi /∈ Vj or xi /∈ M(T ). Then similarly to the above reasoning for alli 6 n we can
find ayi ∈ {xi} such that{yi} ∈ U−i ∩ S∗ andyi /∈ Vj ∩ M(T ). Hence by (G2)
and (E1),

⋃
i6n {yi} ∈ U, but in view of Lemma 2.1(i),

⋃
i6n {yi} /∈ V, and we are

done. 2

It is easy to show that:

THEOREM 3.1. (CL(X), τ ∗) is T0.
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The following theorem generalizes results from [39] (Satz 1) and [23] (Theo-
rem 3.11):

THEOREM 3.2. The following are equivalent:

(i) (CL(X), τ ∗) is T1;
(ii) ∀A ∈ CL(X) ∀x ∈ Ac ∃S ∈ D : A ∈ S∗ andM(S)c ∩ {x} 6= ∅.

Proof. (i) ⇒ (ii) SinceA 6= A ∪ {x}, by T1-ness of the hyperspace we can find
someU = (U0, . . . , Un)S ∈ B∗ containingA and not containingA ∪ {x}. Then
A ∈ S∗ and ifx /∈ M(S), we are done. Thus, assume thatx ∈M(S) and let

t = 1

2
min
i6k
{D(A, Si)− εi, δ(x, Si)− εi}.

DefineŜ = (S0, . . . , Sk; S̃0, . . . , S̃k; ε0 + t, . . . , εk + t; ε̃0, . . . , ε̃k). ThenA ∈ Ŝ∗
andM(Ŝ)c ∩ {x} 6= ∅. Indeed, if{x} ⊂ M(Ŝ), then by Lemma 2.1(ii),{x} ∈ S∗.
Hence by (G3) and (E1) we would have thatA∪{x} ∈ U, which is a contradiction.

(ii) ⇒ (i) PickA,B ∈ CL(X), A 6= B with (say)x ∈ B \ A. If S ∈ D is taken
in accordance with (ii), thenA ∈ S∗ and in view of Lemma 2.1(i),B /∈ S∗ since
{x} * M(S). FurtherB is separated fromA by (Ac)−. 2

COROLLARY 3.1. If (CL(X), τ ∗) is T1 then

(i) X has property(P);
(ii) X is weakly-R0.

Proof. (i) Take someA0, . . . , Ak ∈ CL(X) and someε0, . . . , εk > 0, where
k ∈ ω. Pick anx ∈ X such thatδ(x,Ai) > εi for all i 6 k. Let

t = 1

2
min
i6k
{δ(x,Ai)− εi}.

Then it is easy to see thatx /∈ A = ⋃i6k Bεi+t (Ai). Now clearlyA ∈ CL(X), so
by Theorem 3.2(ii) we can find anS ∈ D such that

A ∈ S∗ and M(S)c ∩ {x} 6= ∅.
Therefore we can take somey ∈ M(S)c ∩ {x}. Observe thatM(S)c is closed inX,
so {y} ⊂ M(S)c, further by Lemma 2.1(i),A ∈ S∗ ⊂ M(S)+, which means that
{y} ⊂ M(S)c ⊂ Ac. It follows then thatδ(z,Ai) > εi + t for all z ∈ {y} andi 6 k.
Consequently, by (G2) we have thatD({y}, Ai) = infz∈{y} δ(z,Ai) > εi + t > εi
for everyi 6 k, which justifies property (P) forX.

(ii) It follows from the fact thatX is weakly-R0 wheneverX has property (P).
Indeed, letU be open in(X, τδ) andx ∈ U . Thenδ(x,U c) > ε for someε > 0
and hence by property (P), there is ay ∈ {x} with D({y}, U c) > ε. So by (G2),
δ(z,U c) > ε for all z ∈ {y}, whence{y} ⊂ U . 2
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We will denote by cl∗(E) the closure ofE ⊂ CL(X) in (CL(X), τ ∗).

LEMMA 3.2. Let (X, τδ) be a weakly-R0 space. LetU = (U0, . . . , Un)S ∈ B∗
andA0 ∈ U. ThenA ∈ cl∗(U) for all A ∈ CL(X) withA0 ⊂ A ⊂ M(S).

Proof. Let V = (V0, . . . , Vm)T ∈ B∗ be a neighborhood ofA. For all j 6 m

let aj ∈ A ∩ Vj . Thenaj ∈ M(T ) by Lemma 2.1(i); thus,Vj ∩M(T ) is an open
neighborhood ofaj ∈ A and hence there existsxj ∈ Vj ∩M(T )∩M(S). For every
j 6 m, put

tj = 1

2
min

{
min
i6k
{δ(xj , Si)− εi},min

h6l
{δ(xj , Th)− ηh}

}
.

Thenxj ∈ Vj ∩⋂i6k(Bεi+tj (Si))
c ∩⋂h6l(Bηh+tj (Th))

c and by weak-R0-ness of
X there existyj ∈ {xj } with {yj } ⊂ Vj , {yj } ∩ Bεi+tj (Si) = ∅ for i 6 k and
{yj } ∩ Bηh+tj (Th) = ∅ for h 6 l. The last two relations imply by Lemma 2.1(ii)
that{yj } ∈ S∗∩T ∗. SinceA0 ∈ S∗ and, by Lemma 2.1(iii),A0 ∈ T ∗ (becauseA0 ⊂
A ∈ T ∗), we have by (G3) and (E1) thatA0∪ Â ∈ S∗ ∩T ∗, whereÂ =⋃j6m {yj }.
Also, (A0∪ Â)∩Vj ⊃ {yj } 6= ∅ for j 6 m, and(A0∪ Â)∩Ui ⊃ A0∩Ui 6= ∅ for
i 6 n. All this means thatA0 ∪ Â ∈ V ∩ U, soA ∈ cl∗(U). 2

Concerning the following theorem see [39] (Satz 3) and [46] (Theorem 2):

THEOREM 3.3. The following are equivalent:

(i) (CL(X), τ ∗) is T2;
(ii) ∀A ∈ CL(X) ∀x ∈ Ac ∃S ∈ D : A ∈ S∗ andx ∈M(S) c

.

Proof. (i) ⇒ (ii) Let U = (U0, . . . , Un)S ∈ B∗ be a neighborhood ofA such
that cl∗(U) does not containA∪{x}. ThenA ∈ S∗. If x ∈M(S), then{x} ⊂ M(S)
and hence by Corollary 3.1(ii) and Lemma 3.2,A ∪ {x} ∈ cl∗(U), which is a
contradiction.

(ii) ⇒ (i) Let A,B ∈ CL(X) be distinct and (say)x ∈ B \A. Choose anS ∈ D

as in (ii). Then by Lemma 2.1(i),S∗ and(M(S)
c
)− are disjointτ ∗-neighborhoods

of A andB, respectively. 2

Denote byFD the class of all continuous functionsf : X → [0,1] such that
whenever inff < a < b < supf there existsS ∈ D with

f←([b,1]) ∈ S∗ and M(S) ⊂ f←([a,1]).

LEMMA 3.3. The infimal value functionalmf (A) = infx∈A f (x) on CL(X) is
τ ∗-continuous for allf ∈ FD.

Proof.Let inf f < a < b < supf andA ∈ m←f ((a, b)). ThenA∩f←((a, b)) 6=
∅ and for any 0< ε < mf (A) − a we haveA ⊂ f←([a + ε,1]). Now take an
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S ∈ D such thatf←([a + ε,1]) ∈ S∗ andM(S) ⊂ f←([a + ε/2,1]). Then by
Lemma 2.1(iii) and (i),A ∈ S∗ ∩ (f←((a, b)))− ⊂ m←f ((a, b)).

The casesmf (A) = inf f andmf (A) = supf , respectively are easier. 2

Confer Lemma 3.1 of [9] (or Lemma 4.4.3 and 4.4.7 of [3]) with the following:

LEMMA 3.4. The following are equivalent:

(i) D is a Urysohn family;
(ii) for all S ∈ D andA ∈ S∗ there existsf ∈ FD such thatf→(A) = {1} and

m→f ((S
∗)c) = {0}.

Proof. (i) ⇒ (ii) Put S0 = S. Proceed inductively, using thatD is a Urysohn
family, to get a collectionSn/2k ∈ D (n, k ∈ ω and 06 n/2k < 1) such that

A ∈ S∗
(n+1)/2k and M(S(n+1)/2k ) ∈ S∗n/2k (k ∈ ω,06 n < 2k − 1). (4)

Indeed, suppose (4) is fulfilled fork 6 k̂ and 06 n < 2k − 1, and letn̂ be such
that 06 n̂ < 2k̂ − 1. Then fromM(S

(n̂+1)/2k̂ ) ∈ S∗n̂/2k̂ , we get anS
(2n̂+1)/2k̂+1 ∈ D

such thatM(S
(n̂+1)/2k̂ ) ∈ S∗(2n̂+1)/2k̂+1

andM(S
(2n̂+1)/2k̂+1) ∈ S∗

n̂/2k̂
; thus, (4) holds

both forn = 2n̂ andk = k̂ + 1. Moreover,A ∈ S∗
(2n̂+1)/2k̂+1

is a consequence of

A ∈ S∗
(n̂+1)/2k̂

,M(S
(2n̂+1)/2k̂+1) ∈ S∗

n̂/2k̂
, and Lemma 2.1(i) and (ii).

It is clear by Lemma 2.1(i) that

M(S(n+1)/2k ) ⊂ M(Sn/2k ). (5)

Definef : X→ [0,1] via

f (x) =
{ inf{r ∈ [0,1) : r a dyadic rational and

x ∈M(Sr) c}, if x ∈⋃r M(Sr)
c
,

1, otherwise.

Thenf→(A) = {1}. Now assume thatE /∈ S∗ andE ⊂ M(S(n+1)/2k ) for somek >
0 and 06 n 6 2k − 2. In view of (5),E ⊂ M(S1/2k ) so by (4) and Lemma 2.1(iii),
E ∈ S∗0, which is a contradiction. It means that ifE /∈ S∗, then for all dyadic
rationalsr ∈ (0,1), E ∩ (M(Sr)) c 6= ∅. Consequently,mf (E) = infx∈E f (x) 6 r
for all dyadicr ∈ (0,1), whencemf (E) = 0.

To justify thatf ∈ FD, observe that if 0< a < b < 1 andn, k ∈ ω is such that
a < n/2k < (n + 1)/2k < b, thenf←([b,1]) ⊂ M(S(n+1)/2k ) ∈ S∗n/2k , whence
f←([b,1]) ∈ S∗

n/2k by Lemma 2.1(iii); on the other hand, it easily follows from (5)

thatM(Sn/2k ) ⊂ f←([a,1]). Finally, notice that for anya ∈ (0,1)
f←([0, a)) =

⋃
r∈[0,a)
r dyadic

M(Sr)
c

and by (5),

f←((a,1]) =
⋃
r∈(a,1)
r dyadic

M(Sr)

SVAN353.tex; 24/08/1998; 14:33; p.11



198 L. ZSILINSZKY

are open inX, sof is continuous.
(ii) ⇒ (i) Sincef ∈ FD, we can find aT ∈ D with f←([1/2,1]) ∈ T ∗ and

M(T ) ⊂ f←([1/4,1]). Then by Lemma 2.1(iii)A ∈ T ∗, sinceA ⊂ f←([1/2,1]),
furtherM(T ) ∈ S∗, sincemf (M(T )) > 1

4 > 0. 2

The origins of the following theorem are in [40] (Satz 6), in [9] (Theorems 3.3
and 3.6) and in [47] (Theorem 2.8):

THEOREM 3.4. The following are equivalent:

(i) (CL(X), τ ∗) is Tychonoff;
(ii) (CL(X), τ ∗) is completely regular;

(iii) (CL(X), τ ∗) is regular;
(iv) (CL(X), τ ∗) is T3;
(v) (CL(X), τ ∗) is T1 andD is a Urysohn family.

Proof. (i) ⇒ (ii) ⇒ (iii) Trivial.
(iii) ⇒ (iv) By Theorem 3.1, the hyperspace is alwaysT0 and henceT1.
(iv) ⇒ (v) Let V = (V0, . . . , Vn)T ∈ B∗ be such thatA ∈ V ⊂ cl∗(V) ⊂ S∗.

ThenA ∈ T ∗ and by Corollary 3.1(ii) and Lemma 3.2,M(T ) ∈ cl∗(V) ⊂ S∗.
(v)⇒ (i) Let A ∈ CL(X) andU = (U0, . . . , Un)S ∈ B∗ be a neighborhood of

A. Without loss of generality assume thatUi ( X for all i 6 n. ThenA ∈ S∗ and
A ∩ Ui 6= ∅ for all i 6 n. It follows from Theorem 3.2 that for eachi 6 n we can
find Ti ∈ D such thatU c

i ∈ T ∗i andM(Ti)c ∩ A 6= ∅. By virtue of Lemma 3.4 we
get somef0, . . . , fn, g ∈ FD such that

g→(A) = {1} and m→g ((S
∗)c) = {0}, (6)

f→i (U
c
i ) = {1} and m→fi ((T

∗
i )

c) = {0} for each i 6 n. (7)

Then by Lemma 3.3,mf0, . . . ,mfn,mg areτ ∗-continuous on CL(X) and so is
ϕ = max{1−mg,mf0, . . . ,mfn}. Clearly, 1−mg(A) = mf0(A) = · · · = mfn(A) =
0, whenceϕ(A) = 0. Further, ifE /∈ U then eitherE /∈ S∗ orE ∩Ui = ∅ for some
i 6 n. In the first case,mg(E) = 0 by (6), while in the second casemfi (E) = 1 by
(7). Consequentlyϕ(E) = 1 for allE ∈ Uc and complete regularity of(CL(X), τ ∗)
follows. 2

COROLLARY 3.2. If (CL(X), τ ∗) is regular orT2, then(X, τδ) is regular.
Proof. In view of Theorem 3.4,(CL(X), τ ∗) is T3 and henceT2. Thus, ifA ∈

CL(X) andx ∈ Ac then by Theorem 3.3 there existsS ∈ D with A ∈ S∗ and

x ∈ M(S) c
. Finally observe that by Lemma 2.1(i),M(S)

c ⊂ M(S)c ⊂ Ac, which
justifies regularity ofX. 2

The following result generalizes Theorems 5.19 and 5.20 of [15] and Theo-
rem 2.10 of [47] (see also Theorem 3.2 and Proposition 4.1 in [26]):

THEOREM 3.5. The following are equivalent:
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(i) (CL(X), τ ∗) is metrizable;
(ii) (CL(X), τ ∗) is pseudo-metrizable;

(iii) (CL(X), τ ∗) is 2nd countable and regular;
(iv) (CL(X), τ ∗) is T1 and D contains a countable Urysohn subfamily(i.e.
∃ countableD′ ⊂ D ∀S ∈ D ∀A ∈ S∗ ∃T ∈ D′ : A ∈ T ∗ andM(T ) ∈ S∗).

Proof. (i) ⇔ (ii) Follows from Theorem 3.4.
(i) ⇒ (iii) Use Corollary 3.1(i) and Lemma 3.1 to justify that 1st countability

of (CL(X), τ ∗) implies separability ofX. LetE be a countable dense subset ofX.
Then the collectionE of the closures of finite subsets ofE is countable and dense in
(CL(X), τ ∗). To see density take some nonemptyU = (U0, . . . , Un)S ∈ B∗. Since
D is a Urysohn family (cf. Theorem 3.4), we can findT ∈ D withM(T ) ∈ S∗ and
Ui ∩M(T ) 6= ∅ for all i 6 n. Pick somexi ∈ E ∩ Ui ∩M(T ) for eachi 6 n.
Then by Lemma 2.1(iii),F =⋃i6n {xi} ∈ S∗, soF ∈ E∩U. Thus(CL(X), τ ∗) is
a separable metric space and hence 2nd countable.

(iii) ⇒ (iv) Regularity of (CL(X), τ ∗) implies its T1-ness (see the proof of
Theorem 3.4 (iii)⇒ (iv)). Further, ifB ′ ⊂ B∗ is a countable base of(CL(X), τ ∗)
(cf. [18], Theorem 1.1.15), defineD′ as the subcollection ofD consisting of the
elements appearing in the representation of members ofB ′. Using thatD is a
Urysohn family, one can easily justify thatD′ satisfies (iv).

(iv)⇒ (i) It is clear by Theorem 3.4 that the hyperspace isT3. Further, ifX had
a countable baseB, then{(U0, . . . , Un)S ∈ B∗ : U0, . . . , Un ∈ B, S ∈ D′, n ∈ ω}
would be a countable base of(CL(X), τ ∗) and the Urysohn Metrization Theorem
would yield (i). Hence it remains to show thatB = {M(T ) c : T ∈ D′} ∪ {X} is a
countable base for(X, τδ). Indeed, ifx ∈ U ∈ τδ and (without loss of generality)
U 6= X, then by Theorem 3.2 we get anS ∈ D with U c ∈ S∗ and{x}∩M(S)c 6= ∅.
Pick aT ∈ D′ such thatU c ∈ T ∗ andM(T ) ∈ S∗ (from (iv)). Then{x}∩M(T ) c ⊃
{x} ∩M(S)c 6= ∅, sox ∈ M(T ) c

. Finally,U c ∈ T ∗ implies by Lemma 2.1(i) that
U c ⊂ M(T ) ⊂ M(T ), whenceM(T )

c ⊂ U . 2

4. Topological Games and Hyperspace Topologies

Let (Y,B) be a topological space with an open baseB. Thestrong Choquet game
onY is played as follows: two playersα and Bεta take turns in choosing objects in
(Y,B); β starts by picking(x0, V0) from

E(Y,B) = {(x, V ) ∈ Y ×B : x ∈ V }
andα responds by someU0 ∈ B with x0 ∈ U0 ⊂ V0. The next choice ofβ is a
couple(x1, V1) ∈ E(Y,B) such thatx1 ∈ V1 ⊂ U0 and thenα picks aU1 ∈ B
with x1 ∈ U1 ⊂ V1 etc. Playerα wins the run(x0, V0), U0, . . . , (xp, Vp),Up, . . .

provided⋂
p∈ω

Vp =
⋂
p∈ω

Up 6= ∅,
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otherwiseβ wins. A tactic ([10]) for α (resp. forβ) is a functionσ : E(Y,B)→ B
(resp.σ : B → E(Y,B)) such thatx ∈ σ(x, V ) ⊂ V for every(x, V ) ∈ E(Y,B)
(resp. such that for everyU ∈ B, the second component ofσ(U) is a subset ofU ).
A winning tactic(abbr. w.t.) forα (resp. forβ) is a tacticσ such thatα (resp.β)
wins every run of the game compatible withσ , i.e. such thatUp = σ(xp, Vp) (resp.
(xp+1, Vp+1) = σ(UP )) for all p ∈ ω. We will say thatY is stronglyα-favorable
(resp.stronglyβ-favorable) providedα (resp.β) possesses a winning tactic in the
strong Choquet game.

The so-calledBanach–Mazur game([10, 38]) is played similarly as the strong
Choquet game, except thatβ chooses only a nonemptyVp ∈ B and playerα a
nonemptyUp ∈ B, with the same inclusionsVp ⊂ Up ⊂ Vp+1 and rules as in
the strong Choquet game. We can analogously define tactics and winning tactics
for α, β, respectively in the Banach–Mazur game. Finally, we will say thatY is
α-favorable(resp.β-favorable) providedα (resp.β) possesses a winning tactic in
the Banach–Mazur game.

The notion of ‘winning tactic’ was used by Choquet ([10, Chapter 8]), while
Galvin and Telgársky ([21]) uses the term ‘stationary winning strategy’. The reason
for this special terminology is that we require that playerα remembers only the
most recent move ofβ when deciding what to do next, instead of remembering
all the previous moves ofβ made so far (in this latter case we would sayα has a
‘winning strategy’). It is not automatic that an arbitrary winning strategy forα can
be reduced to a winning tactic, though for special spaces – including the metrizable
ones – this is the case (see [21, Corollary 11] for the Banach–Mazur game, and [10,
Theorem 8.7] for the strong Choquet game). Notice that forβ the reduction from
a winning strategy to a winning tactic is possible in both the Banach–Mazur game
and the strong Choquet game (see [21] on this).

For further information about topological games cf. [43] or [27]. Now recall
some fundamental results about these games:

THEOREM A. A topological spaceY is notβ-favorable iffY is a Baire space(i.e.
countable intersections of dense open sets are dense).

Proof.See [29, Theorem 2] (cf. [38] also) or [22, Theorem 3.16]. 2

THEOREM B. A metric spaceY is α-favorable iffY contains a dense completely
metrizable subspace.

Proof. By [27, Theorem 8.17(i)]Y is α-favorable iffY is residual in its com-
pletion, which in turn is equivalent to having a dense completely metrizable sub-
space. 2

THEOREM C. A metrizable spaceY is not stronglyβ-favorable iffY is a heredi-
tarily Baire space(i.e. every nonempty closed subspace ofY is a Baire space).

Proof.See [14, Théorème 4.1(b)] or [43, Theorem 1.3]. 2
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THEOREM D. A metrizable spaceY is stronglyα-favorable iffY is completely
metrizable.

Proof.See [10, Theorem 8.7 on p. 136]. 2

The Banach–Mazur game was first applied in the hyperspace setting by McCoy
in [36], which was then generalized by the author in [48, 49]. An application of
the strong Choquet game in [50] provided a short proof of the celebrated Beer–
Costantini Theorem on Polishness of the Wijsman topology.

THEOREM 4.1. Suppose thatX has property(P) and D is a weakly Urysohn
family. If (X, τδ) is stronglyα-favorable, then so is(CL(X), τ ∗).

Proof. Take a w.t.σ : E(X, τδ) → τδ for α in (X, τδ). Define a tacticσ ∗:
E(CL(X), τ ∗)→ τ ∗ for α as follows: first, for eachV ∈ τδ andA ∈ V − fix a point
xA,V ∈ A ∩ V . Then given(A,V) ∈ E(CL(X), τ ∗) whereV = (V0, . . . , Vn)T ∈
B∗, define

σ ∗(A,V) = (σ (xA,V0, V0 ∩M(S)), . . . , σ (xA,Vn, Vn ∩M(S)))S,
whereS is obtained from the Urysohnness ofD. SinceA ∈ S∗ ⊂ T ∗, we have that
A ∈ σ ∗(A,V) ⊂ V. We will show thatσ ∗ is a w.t. forα in (CL(X), τ ∗).

Suppose that(A0,V0),U0, . . . , (Ap,Vp),Up, . . . is a run of the strong Cho-
quet game in(CL(X), τ ∗) such thatUp = σ ∗(Ap,Vp) for all p. DenoteUp =
(U

p

0 , . . . , U
p
np)Sp andVp = (V p

0 , . . . , V
p
mp)Tp for appropriateSp, Tp ∈ D.

We know thatVp+1 ⊂ Up hence by Lemma 3.1 without loss of generality we
may assume thatmp+1 > np = mp andM(Tp+1) ∩ V p+1

i ⊂ M(Sp) ∩ Up

i for all
i 6 np. Putn−1 = −1. Then for allp ∈ ω andnp−1 < s 6 np we have a run

(xAp,V
p
s
, V p

s ∩M(Tp)), Up
s ∩M(Sp), . . . ,

(x
Ap+r ,V p+rs

, V p+r
s ∩M(Tp+r )), Up+r

s ∩M(Sp+r ), . . .
of the strong Choquet game inX compatible withσ . Therefore there exists some
xs ∈⋂r∈ω U

ps+r
s ∩M(Sps+r ) for all s ∈ ω, whereps is the uniquep ∈ ω such that

np−1 < s 6 np.
LetA = {xs : s ∈ ω} and fixp ∈ ω. It is clear thatxs ∈ M(Tp+1) for all s ∈ ω,

hence by (3)A ∈ T ∗p thus,A ∈ Vp for all p ∈ ω, which means thatα wins the
run. 2

LEMMA 4.1. Suppose that(X, τδ) is regular. Then

(i) X̂ = {{x} : x ∈ X} is a closed subset of(CL(X), τ ∗);
(ii) X̂∩ (U0, . . . , Un)S = X̂∩ (M(S)∩⋂i6n Ui)

− = X̂∩ (M(S)∩⋂i6n Ui)
+ for

all (U0, . . . , Un)S ∈ B∗.

Proof. (i) Let A ∈ CL(X) \ X̂. Then there existx, y ∈ A with y ∈ {x}c. By
regularity ofX we can find disjointU,V ∈ τδ such that{x} ⊂ U and{y} ⊂ V . It
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is not hard to see now thatA ∈ U− ∩ V − ⊂ CL(X) \ X̂ thus, CL(X) \ X̂ is open
in (CL(X), τ ∗).

(ii) If {x} ∈ X̂ ∩ (U0, . . . , Un)S then by regularity ofX and Lemma 2.1(i),
{x} ⊂ M(S)∩⋂i6n Ui. Conversely, if{x} ∈ X̂ ∩ (M(S)∩⋂i6n Ui)

− then clearly
{x} ∈⋂i6n U

−
i , furtherx ∈ M(S), and regularity ofX with Lemma 2.1(ii) implies

that{x} ∈ S∗. 2

We are now prepared to prove the main result of this paper on Polishness of
(CL(X), τ ∗). Note that Polishness of various hypertopologies has already been es-
tablished using quite different methods; in this respect we should mention [2, 3, 12,
26] and [34] concerning complete metrizability of certain weak hypertopologies,
further [16] and [3] about complete metrizability of certain (proximal) hit-and-
miss topologies. Our next result characterizes Polishness of hypertopologies with
no additional conditions:

THEOREM 4.2. The following are equivalent:

(i) (CL(X), τ ∗) is Polish;
(ii) (CL(X), τ ∗) is completely metrizable;

(iii) (CL(X), τ ∗) is metrizable and(X, τδ) is stronglyα-favorable;
(iv) (CL(X), τ ∗) is T1, D contains a countable Urysohn subfamily and(X, τδ) is

stronglyα-favorable.

Moreover, ifX is T1, the above are equivalent to

(v) (CL(X), τ ∗) is metrizable and(X, τδ) is Polish.

Proof.(iii) ⇒ (ii) Notice that by Corollary 3.1(i),X has property (P) and by The-
orem 3.4,D is a Urysohn family. Therefore Theorem 4.1 implies that(CL(X), τ ∗)
is stronglyα-favorable, which implies (ii) by Theorem D.

(ii) ⇒ (iii) Only strongα-favorability ofX needs some comments. It follows
from Corollary 3.2 thatX is regular so by Lemma 4.1(i),̂X is a completely metriz-
able subspace of(CL(X), τ ∗). Consequently, by Theorem D,̂X is stronglyα-
favorable. DenoteB̂∗ = {U ∩ X̂: U ∈ B∗} and letσ̂ : E(X̂, B̂∗) → B̂∗ be a
w.t. for α in the strong Choquet game. Define a tacticσ : E(X, τδ)→ τδ for α in X
as follows: given(x,U) ∈ E(X, τδ) write σ̂ ({x}, X̂ ∩ U−) = X̂ ∩ (U0, . . . , Un)S
and putσ(x,U) = M(S) ∩⋂i6n Ui.

Then by Lemma 4.1(ii),x ∈ σ(x,U) ⊂ U . We will show thatσ is a w.t. forα
in X: let (x0, V0), U0, . . . , (xp, Vp),Up, . . . be a run of the strong Choquet game
in X such thatUp = σ(xp, Vp) for all p ∈ ω. Then({x0}, X̂ ∩ V −0 ), X̂ ∩ U−0 , . . . ,
({xp}, X̂∩V −p ), X̂∩U−p , . . . , is a run of the strong Choquet game inX̂ compatible
with σ̂ , which follows by Lemma 4.1(ii). Accordingly, there exists anx ∈ X with
{x} ∈⋂p∈ω V −p , whencex ∈⋂p∈ω Vp andα wins.

(iii) ⇒ (v) It suffices to show thatX is separable and metrizable, since then
(v) follows by (iii) and Theorem D. Indeed, in our caseX is T3 by Corollary 3.2
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and hence metrizable by Lemma 4.1(i); further,X is separable by Theorem 3.5 and
Lemma 4.1(i).

(v)⇒ (iii) follows from Theorem D and the remaining implications are either
trivial or follow from Theorem 3.5. 2

As for α-favorability of hyperspaces we have:

THEOREM 4.3. Suppose thatX has property(P)andD is a weakly quasi-Urysohn
family. If (X, τδ) is α-favorable then so is(CL(X), τ ∗); in particular, (CL(X), τ ∗)
is a Baire space.

Proof. We can adapt the proof of Theorem 4.1 using the Banach–Mazur game
instead of the strong Choquet game, using a weakly quasi-Urysohn family instead
of a weakly Urysohn family and omitting thex’s andA’s from the argument. 2

Observe, that we cannot use an argument similar to that of in Theorem 4.2
to characterizeα-favorability of the (metrizable) hyperspace, since it would re-
quire thatα-favorability be closed-hereditary, which is not the case (cf. [45, Re-
mark 2.4(2)]). This is not the case in the hyperspace setting either, otherwiseα-
favorable hyperspaces would be hereditarily Baire; however we have the following

THEOREM 4.4. There exists a separable, hereditarily Baire,α-favorable metric
spaceX such thatCL(X) with the Wijsman topologyτW is α-favorable but not
hereditarily Baire.

To prove this theorem we need some auxiliary material first. A consequence
of a theorem of A. Bouziad ([6, Theorème 2.1]) claims that if there is a perfect
mapping from a regular spaceY to a metric hereditarily Baire spaceZ, thenY is a
hereditarily Baire space. We have the following variation of this theorem:

THEOREM 4.5. Letf : Y → Z be a perfect mapping from a Tychonoff spaceY
to a 1st countable,T3, hereditarily Baire spaceZ. ThenY is a hereditarily Baire
space.

Proof. We can adapt the proof of Theorem 3.7.26 in [18]. In fact, there exists
a homeomorphic embeddingg: Y → K of Y into a Hausdorff compact spaceK.
Then the diagonalf4g: Y → Z×K is a perfect mapping (by [18, Theorem 3.7.9])
and a homeomorphic embedding; henceY is homeomorphic to a closed subspace
of Z × K. Now it suffices to use Theorem 12 of [7] claiming, that the product
of a 1st countable, regular hereditarily Baire space and a regular compact space is
hereditarily Baire. 2

Proof of Theorem 4.4.Let X be the separable, hereditarily Baire,α-favorable
metric space from [1] having non-hereditarily Baire square. Then by Theorem 4.3,
(CL(X), τW) is α-favorable; further, it is metrizable, sinceX is separable ([3,
Theorem 2.1.5]).
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On the other hand(CL(X), τW) is not hereditarily Baire. Indeed, notice that
Y = X2 \ {(x, x) : x ∈ X} is not hereditarily Baire, since{(x, x) : x ∈ X} is
hereditarily Baire andX2 is not. Further, ifZ stands for the two-element subsets of
X endowed with the relative Wijsman topology, then the natural mapping fromY

ontoZ is a perfect mapping. Hence by Theorem 4.5,Z is not hereditarily Baire and
neither is(CL(X), τW ), sinceZ isGδ in (CL(X), τW ) (see [14, Proposition 1.2]).2

5. Applications

As for (strong)α-favorability of hypertopologies we have the following three the-
orems. The first two extend Theorem 4.3 of [48] and the third one generalizes
Theorem 3(ii) of [49]:

THEOREM 5.1. Suppose that(X, τ) is a (strongly) α-favorable weakly-R0 topo-
logical space and1 is a weakly quasi-Urysohn(resp. weakly Urysohn) family.
Then(CL(X), τ+) is (strongly) α-favorable.

Proof.See Remark 3.1(ii), Remark 3.2(ii) and Theorem 4.1 (resp. Theorem 4.3).
2

THEOREM 5.2. Suppose that(X,U) is a (strongly) α-favorable uniform space
and 1 is a uniformly weakly quasi-Urysohn(resp. uniformly weakly Urysohn)
family. Then(CL(X), τ++) is (strongly) α-favorable.

Proof.See Remark 3.1(ii), Remark 3.2(i) and Theorem 4.1 (resp. Theorem 4.3).
2

THEOREM 5.3. Suppose that(X, d) is a (strongly) α-favorable metric space and
11 contains the singletons. Then(CL(X), τweak) is (strongly) α-favorable.

Proof.See Remark 3.1(iii), Remark 3.2(i) and Theorem 4.1 (resp. Theorem 4.3).
2

THEOREM 5.4. Let (X, τ) (resp.(X,U)) be a topological(resp. uniform) space
and1 ⊂ CL(X). The following are equivalent:

(i) (CL(X), τ+) (resp.(CL(X), τ++)) is Polish;
(ii) (CL(X), τ+) (resp.(CL(X), τ++)) is completely metrizable;

(iii) (CL(X), τ+) (resp.(CL(X), τ++)) is metrizable and(X, τ) (resp.(X,U)) is
stronglyα-favorable;

(iv) (CL(X), τ+) (resp.(CL(X), τ++)) is T1,1 contains a countable(uniformly)
Urysohn subfamily and(X, τ) (resp.(X,U)) is stronglyα-favorable.

Moreover, if(X, τ) (resp.(X,U)) is T1, the above are equivalent to

(v) (CL(X), τ+) (resp.(CL(X), τ++)) is metrizable and(X, τ) (resp.(X,U)) is
Polish.

Proof.See Theorem 4.2. 2
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The following theorem generalizes Theorem 3.6. and Theorem 4.2 of [26]:

THEOREM 5.5. Let (X, d) be a metric space and11 contain the singletons. The
following are equivalent:

(i) (CL(X), τweak) is Polish;
(ii) (CL(X), τweak) is completely metrizable;

(iii) (CL(X), τweak) is 2nd countable and(X, d) is completely metrizable;
(iv) (CL(X), τweak) is 2nd countable and(X, d) is Polish.

Proof.Observe that if11 contains the singletons, then(CL(X), τweak) is T1 and
by Remark 2.1(iii) it is completely regular as an initial topology; hence the theorem
follows from Theorem 3.5 and Theorem 4.2. 2

Note thatH(A,B) = max{e(A,B), e(B,A)} is the so-calledHausdorff metric
betweenA,B ∈ CL(X). Confer Theorem 3.3 and Theorem 4.3 of [26] with:

COROLLARY 5.1. Let (X, d) be a completely metrizable space. Let11 and12,
respectively be separable with respect to the induced Hausdorff metric and11

contain the singletons.
Then(CL(X), τweak) is a Polish space.
Proof. Let �i ⊂ 1i be countable and dense in1i with respect toH for each

i = 1,2. Since11 contains the singletons, it is easy to show thatX is separable;
let B be a countable base ofX. Then the collection of all⋂

i6n
U−i ∩

⋂
j6m

(D←(·, Aj ) ∩ e←(·, Bj ))

with U0, · · · , Un ∈ B,Aj ∈ �1 andBj ∈ �2 for all j 6 m andm,n ∈ ω, forms a
countable base forτweak and Theorem 5.5 applies. 2
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