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Abstract. The paper proposes a unified description of hypertopologies, i.e. topologies on the non-
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acterizations of separation axioffig, Ty, T»>, T3 and complete regularity as well as of metrizability
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0. Introduction

There has been an impressive growth in the number of recently introduced topolo-
gies on thényperspacdi.e. the collection of all nonempty closed subsets) X} of

a topological spacéX, 7) (see [3] for a survey). This increasing interest is owing

to usefulness of these so-callagipertopologiesn different fields of application
(such as probability, statistics or variational problems, for instance). It also ex-
plains the effort in understanding their structure, common features and general
patterns in order to find a common description for them. The papers [4, 41, 42]
or more recently [35], are partially or completely devoted to this goal, offering
various possibilities of generalization. Let us also mention the paper [34], where
the notion ofapproach spacewas first applied in the hyperspace setting to pro-
vide a new description of some important hyperspace topologies. It is one of the
purposes of our paper to give another description of hyperspace topologies based
on approach spaces (cf. [31, 32]). In order to explain the nature of our description,
let us first describe the topologies we are going to deal with:EfoC X write
E-={AeCLX): ANE # @), Et = {A € CL(X) : A C E}; further if
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(X, W) is a uniform space, pulit+ = {A € CL(X) : 3U € U with U[A] C E},
whereU[A] = {x € X : da € A with (x,a) € U}. There are three types of
hypertopologies which include most of the studied topologies:hitand-miss

the proximal hit-and-missand theweak topologies generated by gap and excess
functionalson CL(X), respectively.

The abstract hit-and-miss topology on G has as a subbase all sets of the
form V—, whereV is an arbitrary open subset &fplus all sets of the forndB¢)*,
whereB® = X \ B andB ranges over a fixed nonempty subfamflyc CL(X). It
was first studied in [39, 40] and then also in [3, 8, 9, 15, 24, 46, 47, 48]; the well-
known prototypes of hit-and-miss topologies are Wetoris topology with A =
CL(X) ([3, 30, 37]) and thdell topology with A = nonempty closed compact
subsets of ([3, 19, 30]).

If (X, U) is a uniform space andB®)* is replaced by B®)*™ in the above def-
inition, we get the proximal hit-and-miss topology or hit-and-far topology, studied
in [3, 8, 9, 15, 16] and [48], for instance; among its useful prototypes we can find
the proximal topology with A = CL(X) ([5, 17]) or theball-proximal topology
with A = closed proper balls in a metric spakg[11, 25, 48]).

In a metric spacéX, d) define thedistancefunctional

dx, A) = inid(x,a) xeX,V#ACX),
ae

thegapfunctional

D(A,B) = infd(a, B) (A,BCX),
ae

and theexcesdunctional

e(A, B) =supd(a, B) (A, B C X).
acA

Then the so-calledveak hypertopologiesr initial topologies on CI(X) are de-
fined as the weak topologies generated by gap (in particular distance) and excess
functionals, where one of the set argument®gfi, B) ande(A, B), respectively
ranges over given subfamilies of CX). A good reference about these topologies
is [3, 4, 26] or [49]. As a prototype of weak hypertopologies we should mention
the Wijsman topologywhich is the weak topology generated by the distance func-
tionals viewed as functionals of set argument ([2, 3, 12, 13, 20, 25, 48, 50]); itis a
fundamental tool in the construction of the lattice of hyperspace topologies, as most
of the above and many other known topologies arise as suprema and infima, respec-
tively of appropriate Wijsman topologies ([5, 11]). Another weak hypertopology is
thefinite Hausdorff topologyvhich is the weak topology on GIX) generated by
{e(F,-) : F C X, F finite} U {e(-, F) : F C X, F finite} ([3, 26, 50]); the finite
Hausdorff topology — as well as the Wijsman topology — is measurably compatible
on CL(X), i.e. its Borel field coincides with the Effras-algebra ([3]). Finally,
we should at least mention two more important weak hypertopologies, namely the
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Hausdorff metric topologgnd theAttouch—Wetts topology3]); they however fail
to follow the pattern this paper investigates.

In Section 1 of the paper we introduce approach spaces and some other notions
needed for the following exposition.

In Section 2 we present a formulation based on the notion of approach spaces,
which includes as a special case the abstract hit-and-miss, the proximal hit-and-
miss and a big portion of weak hypertopologies (including the Wijsman topology
and the finite Hausdorff topology), respectively. One of the advantages of this ap-
proach is that it borrows a ‘metric-like’ quality to the definitions and it may provide
a framework where it is easier to come up with results about hypertopologies just
by mimicking the results and proofs known for the weak hypertopologies.

In Section 3 we give characterizations of separation axi@gm$g, 7>, T3 and
of complete regularity as well as of metrizability in this general setting using
techniques and ideas from [15] and [47].

All this is done to provide a background for proving the main results of the
paper in Section 4, where we apply topological games, such as the Banach—Mazur
and the strong Choquet game, respectively ([10] or [27]) to investigate properties
of hypertopologies; in particular, we characterize Polishness of hypertopologies in
this general setting, much in the spirit of [50]. The reason why topological games
seem to work well on hyperspaces, and make proofs simpler is that they require the
knowledge of basic open sets only, which are the best known and sometimes the
only objects to work with, in hypertopologies.

Finally, in Section 5, we ‘translate’ the general results to get the pertinent ap-
plications for (proximal) hit-and-miss and various weak hypertopologies, thus ob-
taining new results on Polishness of hypertopologies, as well as extending old ones
(e.g. [26, 49, 50]).

1. Distances, Gaps and Excesses

Throughout the papes stands for the non-negative integes3(X) for the power

set of X and E°€ for the complement of C X in X, respectively. Iff is a function

andE is a set thery~ (E) (resp.f < (E)) denotes the image (resp. preimagefof
Suppose thatX, §) is anapproach spacécf. [31, 32]), i.e.X is a nonempty set

ands: X x P(X) — [0, oo] is a so-calledlistance(on X) having the following

properties:

(D1) Vx e X: é(x,{x}) =0,

(D2) Vx € X: é(x, ) = o0,

(D3) Vx e X VA, B C X: 8(x, AU B) = min{§(x, A), §(x, B)},

(D4) Vxe XVAC XVe>0:6(x,A) <38(x,B.(A)) + ¢,

where B(A) = {x € X : 6(x,A) < ¢} is the closede-hull about A. Every
approach spadgX, §) generates a topology on X defined by the closure operator:

A={xeX:8(x,A) =0}, ACX.
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The symbol $(A) will stand for the ‘open’s-hull aboutA, which is the sefx <
X :8(x, A) < ¢} (the reason for the quotation mark is that while the closed hull is
closed in(X, t5) as one readily sees from (D4), the ‘open’ hull is not necessarily
open in(X, ts)).

The functionalD: £ (X) x £(X) — [0, oo] will be called agap provided:

(G1) YA,B C X : D(A, B) < infeq8(a, B),
(G2) ¥x e XVACX:D(x},A) =inf,.5780, A),
(G3) VA,B,C C X:D(AUB, C) =min{D(A, C), D(B, C)}.

In the sequel (unless otherwise stat&dyill stand for an approach spac¥, §)
with a gapD (denoted also a&X, 8, D)).
Examples of Distances

e ([31, 32]) Let(X, t) be a topological space. Fore X andA C X define

0, if x € A,

o, A) = {oo, if x ¢ A.

Thens, is a distance oX andt = t;,.
e ([33]) Let (X, U) be a uniform space (see [28]). Thehis generated by the
family O of uniform pseudo-metrics ok such that/ < 1 for alld € £ and

dy,d, € D = max{dy, dy} € D. (l)
Then

S,(x,A) =supd(x,A), xeX, ACX
deD

defines a (bounded) distance ¥randz;, coincides with the topology induced
by U on X.

e ([31, 32]) Let(X, d) be a metric space. Thép (x, A) = d(x, A) is a distance
on X andt;, is the topology generated liyon X.

Examples of Gaps

e For an arbitrary approach spagk, &)

D(A, B) = inf §(a, B)
acA

is clearly a gap orX. This is how we are going to define the gap (resp.
D,,) in topological (metric) spaces using the relevant distan¢eesp.s,,).
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e Let (X, U) be a uniform space generated by the fandilyof uniform pseudo-
metrics onX bounded above by 1. Far, B C X define

D, (A, B) = supinf d(a, B).
deD acA

ThenD, is a gap orX. Indeed, it is a routine to check (G1), and (G2) follows
from the fact thatD,, ({x}, A) = 6,(x, A) forall x € X, A C X. Finally, (G3)
is a consequence of (1) and the boundedned3, of

Excess Functional

Forall A, B C X define theexces®f A over B by

e(A, B) = sups(a, B).

acA

The symbols;, ¢,, ¢,, will stand for the excess in topological, uniform and metric
spaces, respectively defined vjas,, 8,,. Observe that

(E1) VA,B,CC X:e(AUB,C) = maxXe(A, C), e(B, C)},

(E2) VBC XVe>0:x¢€S,(B)= e({x},B) <e.

Indeed, (E1) is straightforward, and for (E2) notice, thatif, B) < sfor A, B C

X ande > 0, thenA C B.(B) for somer > 0. Hence by closedness of the closed
hull aboutB, we getA C B,_,(B), S0e(A, B) < .

2. Hyperspace Topologies

In the sequel CIX) will stand for the nonempty closed subsets(&f, 75). For
ECcXwrittE-={AeCL(X): ANE#W},ET ={AeCL(X): AC E}and
Ett ={A € CL(X) : D(A, E®) > 0}. Observe that by (G1)

ETT c ET forall E C X.
In what followsA; c CL(X) is arbitrary andA, C CL(X) is such that
Ve > 0VA € Ay = S.(A) is open inX. (2)

As a matter of fact, condition (2) is quite natural and in the applications (see
Remark 2.1(iv)) it will be satisfied always.

Denote® = D(A1, Ap) = U, (A1 U B x (A U {X ] x (0, 00)+2,
Whenever referring to some 7 € © in the sequel, we will assume that for some
k,lew

SZ(S(),...,Sk;50,...,Sk;SO,...,Sk;go,...,g‘k),
T:(T07"'7]—2;TO?""E;r]o"“’nl;ﬁo"“?ﬁl)‘
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For S € © denote

M(S) = [)(B:($))° NS (S) and
i<k
$* =4 € CL(X) : D(A, ;) > & ande(A, §) < &}.

i<k
Observe that ifP = (7; X; ¢; €), then

M(P)=X and P*=CL(X).

LEMMA 2.1. LetS € ©. Then

(i) §* c M(S)*;
(i)) Vx e M(S) : (3t > 0Vi < k: (x} NS, 1 (S) =0) = {x] € §%);
(i) AcBeS* = Aes~

Proof. (i) If A € S*then by (Gl),s; < D(A, S;) < inf,caé8(x,S;), SOA C
(B, (S;))¢ for all i < k. Furtherg; > e(A,S) = sugeAS(x,Si) implies that
A CS;(S).

(i) Use (G2) and (E2).

(iii) Use that by (G3) (resp. (E1)P(A,C) > D(B,C) (resp.e(A,C) <
e(B,C))forall C C X. O

ForUy,...,U, € ts andS € D denote

(Uo. ... Us =\ U7 NS™.

i<n
It is easy to see that the collection
B*={Up,...,U)s:Up,..., U, €15,8§ €D,n € w)

forms a base for a topology on CK); denote it byr*.

Remark 2.1(i) Let (X, t) be a topological space. L&t; = A andA, = {X}.
Then forB € A ande,n > 0,{A € CL(X) : D;(A,B) > ¢} = (B%" and
{A € CL(X) :¢e(A, X) < n} =CL(X). Thust* = 7 is the generahit-and-miss
topologyon CL(X).

(i) Let (X, U) be a uniform space. Leh; = A and A, = {X}. Then for
B e Aande,n > 0,{A € CL(X) : D,(A, B) > ¢} = (B®*" and{A € CL(X) :
e, (A, X) < n} = CL(X). Thust* = 1" is the proximal hit-and-miss topology
on CL(X).

(iii) Let (X, d) be a metric space. Lét,, A, C CL(X) be such that, contains
the singletons. Then* coincides with the weak hypertopoloay.ax generated by
gap and excess functionals.
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(iv) Observe that in the above applications, condition (2) is not really restrictive,
since in uniform and metric spaces it is fulfilled for arbitraxy ¢ CL(X); further
for the hit-and-miss topology we need oty = { X} thus, in this setting (2) holds
again.

3. Separation Axioms and Metrizability

We will say that® is a Urysohn familyprovided whenevef € © andA € S*
there existsd’ € © such thatA € T* andM(T) € S*.

Further® is aweakly Urysohn familprovided for allS € © andA € S* there
existsT € © such thatd € T* c $* and

VE countable:E ¢ M(T) = E € S*. (3)

The family ® is weakly quasi-Urysohprovided for alld # (U, ..., U,)s € B*
there is al' € ® such that) # (Uy, ..., U, C (Uy, ..., U,)s andS, T satisfies

A).

Remark 3.1(i) If © is a Urysohn family, it is also weakly Urysohn (by Lem-
ma 2.1(iii)); if ® is a weakly Urysohn family, it is a weakly quasi-Urysohn family
as well.

(i) Let (X, 1) ((X, W)) be a topological (uniform) spacey, = {X} andA; =
A. Denote byX (A) the finite unions of members @ ¢ CL(X).

If Ais a uniformly) Urysohn family(i.e. for all S € Z(A) andA € (59"
(resp.A € (S6)**) there exists & e T (A) with A ¢ T¢ c T¢ c S° (resp.
A CTCcU[SI®forsomeU € U) —cf. [2, 3]), then®,(=D,)=D(A, {X})isa
Urysohn family.

Further, if we will say thatA is a uniformly) weakly Urysohn familprovided
forall S € X(A) andA € (ST (resp.A € (S°) ") there exists & € X (A) with
ACTCcC S°(resp.A C T¢ C U[S]° for someU € U) such that

VE countable:(E c T = E c §°
(resp.E C U[S]° for someU e U), @)

then®,(= D,) is a weakly Urysohn family.

Similarly, if A is said to be ayniformly) weakly quasi-Urysohn familyrovided
wheneverS € X(A) andU; € t \ {#} are disjoint for alli < n, there exists
T € Z(A) such thaty; N T¢ £ @ foralli < n, S ¢ T and (3) holds, then
D,(=D,) is a weakly quasi-Urysohn family.

Note that a @niformly) quasi-Urysohn familyf [48] is a (uniformly) weakly
guasi-Urysohn family.

(i) If (X,d) is a metric space and, contains the singletons, then,, =
(A1, Ap) is a Urysohn (hence also weakly Urysohn and weakly quasi-Urysohn)
family.
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Indeed, suppose that € ©,,. ThenA < S* implies D,,(A, S;) > ¢ and
en(A, §;) < & foralli < k. Puty; = 22245 andf; = ftenldS) forj  kand
defineT = (So, ..., Sk So. .- .., Ski no. - ... i flo - - ., k). Then clearlyA e T*.
Further, ifx € M(T) thend(x Si) = n; andd(x, S) < #; foralli < k, so

D,,(M(T), S;) = n; > & ande,,(M(T), S;) < 7; < & forall i < k. It means that
M(T) e §*.

We will say that(X, §, D) hasproperty(P) provided

Vx € X Vk € w VAo, ..., Ay € CL(X) Veo, ..., e > 03y € {x}:
S(x, A;) > & = D({y}, A)) > & foralli <k.

Remark 3.2(i) Observe that (P) is satisfied in uniform and metric spaces, since
theres(x, A) = D({x}, A).

(i) In a topological spacéX, ), (P) is satisfied iffX is weakly Ry (see [46,
47)), i.e. forallU € tr andx € U there is ay e {x} with {y} c U iff each
nonempty difference of open sets contains a nonempty closed set.

The following lemma will play a key role in the next paragraph as it will enable
the transfer of topological games from the base space to the hyperspace.

LEMMA 3.1. Suppose thatX, §, D) has property(P). Suppose thaty, ..., U,,
Vo, ..., Viy € 15 forsomem,n e wandS, T € D.

Theng £ (U, ..., U,)s € (Vo, ..., V)7 impliesM(S) ¢ M(T) and for all
Jj < m there exists < n with M(S) N U CM(T)NV,.

Proof.Let A ¢ U = (Uy,...,U,)s andV = (Vo,.. V) r. Suppose that
there exists anx € M(S) \ M(T). Then by (P), there existg € {x} such that
D({y} S,) > ¢ forallr <k. Then{y} € §*, since by (E2) ang € {x} we have
e(O), S) <e(x}, S,) <& forallr <k.

Furthery ¢ M(T). Indeed, sincec ¢ M(T) then eitherx € B, (T;) orx ¢
S,;S(TS) for somes < . In the first case using closedness of the closed hull we
get thaty € {x} C B;,(T}), while in the second case in view of (2),e {x} C
(S;, (T;))°. Now by (G3) and (E1)A U{y} € U, but by Lemma 2.1()AU {y} ¢ V
sinceA U {y} ¢ M(T)*, which is a contradiction.

Suppose that there exisis< m such that for ali < » we have some; e
U NM(S)\V;NM(T). Then for alli < n,8(x;, Uf) > 6, for somey; > 0 and
x; ¢ V;yorx; ¢ M(T). Then similarly to the above reasoning foral » we can
find ay; € {x;} such that{y;} € U, N S* andy; ¢ V; N M(T). Hence by (G2)
and (E1)U., (v} € U, butin view of Lemma 2.1()l; , {»:} ¢ V, and we are
done. O

It is easy to show that:

THEOREM 3.1. (CL(X), t%) is To.
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The following theorem generalizes results from [39] (Satz 1) and [23] (Theo-
rem 3.11):

THEOREM 3.2. The following are equivalent:

() (CL(X), %) is Tx;
(i) VAe CL(X)Vx € A°3S €D : A e S*andM(S)°N{x} # 0.

Proof. (i) = (i) Since A # A U {x}, by Ti-ness of the hyperspace we can find
someU = (U, ..., U,)s € B8* containingA and not containingd U {x}. Then
A e S*andifx ¢ M(S), we are done. Thus, assume that M(S) and let

1 .
t=_-min{D(A,S;) —&,8(x,S;) — &}
2 i<k

DefineS = (So, ..., Sk; S0, ..., Si; €0+ 1, ..., 6 +1; 80, ..., &). ThenA e §*
and M (5)° N {x} # ¢. Indeed, if{x} ¢ M(S), then by Lemma 2.1(ii){x} € S*.
Hence by (G3) and (E1) we would have tat {x} e U, which is a contradiction.
(i) = (i) Pick A, B € CL(X), A # B with (say)x € B\ A. If § € © is taken
in accordance with (ii), them € S$* and in view of Lemma 2.1(i))B ¢ S* since
{x} € M(S). FurtherB is separated from by (A®)~. O

COROLLARY 3.1. If (CL(X), t*) is Ty then

() X has property(P);
(i) X is weaklyRy.

Proof. (i) Take someAy, ..., Ay € CL(X) and somezy, ..., & > 0, where
k € w. Pick anx € X such that(x, A;) > ¢; foralli < k. Let

1 .
= > rpg'/'{"{fs()c, A;) — &}

Then it is easy to see that¢ A = Uigk B, (A;). Now clearlyA € CL(X), so
by Theorem 3.2(ii) we can find af e © such that

AeS* and M(S)°N{x} #0.

Therefore we can take sonyes M (S)¢ N {x}. Observe thad/(S)¢ is closed inX,
so{y} C M(S)S, further by Lemma 2.1()A € S* c M(S)*, which means that
{y} € M(S)¢ C AS. Itfollows then thaB(z, A;) > &; +1 forall z € {y} andi < k.
Consequently, by (G2) we have tha({y}, A;) = inf,.579(z, A) > &+t > &
for everyi < k, which justifies property (P) fok.

(i) It follows from the fact thatX is weakly-Rq wheneverX has property (P).
Indeed, letU be open in(X, 75) andx € U. Thend(x, U® > ¢ for somee > 0
and hence by property (P), there ig a {x} with D({y}, U®) > &. So by (G2),
8(z, U > ¢ forall z € {y}, whence{y} Cc U. 0
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We will denote by c|(E) the closure oE c CL(X) in (CL(X), ).

LEMMA 3.2. Let (X, t5) be a weaklyRq space. Let) = (U, ..., U,)s € B*
andAg € U. ThenA e cl,(U) forall A € CL(X) with Ag C A C M(S).

Proof.LetV = (Vg, ..., V,)r € 8* be a neighborhood od. For all j < m
leta; e ANV;. Thena; € M(T) by Lemma 2.1(i); thusy; N M(T) is an open
neighborhood ofi; € A and hence there exists € V; N M(T)NM(S). For every
j < m, put

1 . . .
ty = 5 min{ min(s(x;, $) - &), minio (s, 73) = m .

Thenx; € V; N ()¢t Beitr;(8))° N[, By, (T1))© and by weakRo-ness of
X there existy; € {x;} with {y;} C V;, {y;} N B4, (S) = ¥ fori < k and
{yj} N Byyss; (Tw) = ¥ for h < 1. The last two relations imply by Lemma 2.1(ii)
that{y;} € S*NT*. Since4, € §* and, by Lemma 2.1(iii)A¢ € T* (becausely C

A e T*), we have by (G3) and (E1) thdbU A € S*NT*, whereA = {J,,, [7/}.
Also, (AU A)N'V; D {y;] # @ for j <m,and(AgU A)NU; D AgNU; # ¢ for

i < n. All this means thatlo U A € VN U, soA e cl,(U). |

Concerning the following theorem see [39] (Satz 3) and [46] (Theorem 2):

THEOREM 3.3. The following are equivalent:

(1) (CL(X), ") is Ty
(i) VAeCL(X)Vx € A3 €D : A e S*andx € M(S)

Proof. (i) = (ii) Let U = (Uy, ..., U,)s € B* be a neighborhood of such
that cl.(U) does not contairt U {x}. ThenA € S*. If x € M(S), then{x} c M(S)
and hence by Corollary 3.1(ii) and Lemma 32,U {x} € cl.(U), which is a
contradiction.

(i) = (i) Let A, B € CL(X) be distinct and (say>) € B\ A.Choose arf € ©
as in (ii). Then by Lemma 2.1(i)§* and (M (S) ) are disjointr*-neighborhoods
of A and B, respectively. O

Denote byF5 the class of all continuous functions X — [0, 1] such that
whenever inff < a < b < supf there existsS € ® with

(b, 1) e §* and M(S) C f* (la, 1]).

LEMMA 3.3. The infimal value functionak ;(A) = inf,cs f(x) on CL(X) is
*-continuous for allf € 5.
Proof.Letinf f <a < b < supfandA € my ((a, b)). ThenANf < ((a, b)) #
¢ and for any O< ¢ < m¢(A) —a we haveA C f<([a + ¢, 1]). Now take an
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S € ® such thatf < ([a + ¢,1]) € S* andM(S) C f<([a + ¢/2,1]). Then by
Lemma 2.1(iii)) and () A € S*N (f < ((a, b))~ C my ((a, b)).
The cases ;(A) = inf f andm ;(A) = supf, respectively are easier. O

Confer Lemma 3.1 of [9] (or Lemma 4.4.3 and 4.4.7 of [3]) with the following:
LEMMA 3.4. The following are equivalent:

(i) ® is a Urysohn family;
(i) forall S € ® and A € S* there existsf € 5 such thatf—~(A) = {1} and
m7 ((5M)°) = {0}
Proof. (i) = (ii) Put Sy = S. Proceed inductively, using tha is a Urysohn
family, to get a collectiors, .« € D (n, k € w and 0 n/2* < 1) such that

AeSi ym and M(Suip2) €5y (kew,0<n<2°=1. (4)

Indeed, suppose (4) is fulfilled faér < k and 0< n < 28— 1, and leta be such
that 0< i < 2 — 1. Then fromM (S ,wegetanS,, , .. €D

N *
G+n/2) € S5
such thatM (S o) € SE"MH)/ZM and M(S(Zﬁ 11 /2@+1) € SZ/ZIG; thus, (4) holds

(A+1)/

both forn = 24 andk = k + 1. Moreover,A € S* . is a consequence of
(2A4-1)/2k+1
AeS*

(4120 M(S(Zﬁﬂ)/z,;ﬂ) € Sz/zﬁ’ and Lemma 2.1(i) and (ii).
Itis clear by Lemma 2.1(i) that
M(S(n+1)/2’<) C M(Sn/zk)- %)
Definef: X — [0, 1] via
inf{r €[0,1) :ra dyadiccrational and .
fx) = x e M(S,)}, ifx el M(S,),
1, otherwise.
Thenf~(A) = {1}. Now assume that ¢ S* andE C M (S, 1)2«) for somek >
0and 0< n < 28 — 2. In view of (5),E C M(Sy,») so by (4) and Lemma 2.1(iii),
E € S5, which is a contradiction. It means that&f ¢ S*, then for all dyadic
rationalsr € (0,1), EN (M(S,))C # ¢. Consequentlyy ((E) = infycp f(x) <r
for all dyadicr € (0, 1), whencen ((E) = 0.
To justify that f € 5, observe thatif < a < b < 1 andn, k € w is such that
a<n/2* < (n+1)/2* < b, thenf<([b,1]) C M(S,11),2) € e whence

(b, 1)) € S;:/zk by Lemma 2.1(iii); on the other hand, it easily follows from (5)

thatM (S, o) C £ ([a, 1]). Finally, notice that for any € (0, 1)
F0.a) = | J M(S)°and by (5)

rel0,a)
r dyadic

f @ = | M)

re(a,l)
r dyadic
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are open inX, so f is continuous.

(i) = (i) Since f € F», we can find al' € © with f<([1/2,1]) € T* and
M(T) C f<([1/4,1]). Then by Lemma 2.1(iiiA € T*, sinceA C f<([1/2, 1)),
further M (T') € S*, sincem ;(M(T)) > % > 0. O

The origins of the following theorem are in [40] (Satz 6), in [9] (Theorems 3.3
and 3.6) and in [47] (Theorem 2.8):

THEOREM 3.4. The following are equivalent:

() (CL(X), t*) is Tychonoff;
(i) (CL(X), t*) is completely regular;
(i) (CL(X), t*) is regular;
(iv) (CL(X), t*)is Tz;
(V) (CL(X), t*) is T1 and® is a Urysohn family.
Proof. (i) = (ii) = (iii) Trivial.
(iii) = (iv) By Theorem 3.1, the hyperspace is alwdysand hencd.
(iv) = (v) LetV = (Vg, ..., V,)r € 8* be suchthad € V c cl, (V) C S*.
ThenA € T* and by Corollary 3.1(ii) and Lemma 3.24(T) € cl.(V) C S*.
(V)= () Let A € CL(X)andU = (U, ..., U,)s € B8* be a neighborhood of
A. Without loss of generality assume thigt C X for alli < n. ThenA € $* and
ANU; #@foralli < n. ltfollows from Theorem 3.2 that for each< n we can
find 7; € ® such thatU? € T and M (T;)° N A # ¢J. By virtue of Lemma 3.4 we
get somefy, ..., fu, g € Fo such that

g7 (A)={1} and m; ("% = {0}, (6)

W) ={1 and my (T7")°) ={0} foreach i <n. 7)
Then by Lemma 3.3, ..., my,, m, arer*-continuous on CLX) and so is

o =max{l-mg, my,...,my}. Clearly, l-mgy(A) =mg(A) =--- =my (A) =

0, whencep(A) = 0. Further, ifE ¢ U then eitherE ¢ S* or ENU; = ¢ for some
i < n.Inthe first casen,(E) = 0 by (6), while in the second case;, (E) = 1 by
(7). Consequently(E) = 1forall E € U°and complete regularity ¢CL(X), t*)
follows. O

COROLLARY 3.2. If (CL(X), t*) is regular or T, then(X, t5) is regular.
Proof. In view of Theorem 3.4(CL(X), t*) is Tz and hencel». Thus, ifA €
CL(X) andx € A° then by Theorem 3.3 there exisfse © with A € $* and
X € M(S)C. Finally observe that by Lemma 2.1(?)1(S)C C M(S)¢ C A°, which
justifies regularity ofX. O

The following result generalizes Theorems 5.19 and 5.20 of [15] and Theo-
rem 2.10 of [47] (see also Theorem 3.2 and Proposition 4.1 in [26]):

THEOREM 3.5. The following are equivalent:
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() (CL(X), t*) is metrizable;
(i) (CL(X), t*) is pseudo-metrizable;
(i) (CL(X), t*) is 2nd countable and regular;
(iv) (CL(X),t*) is T, and © contains a countable Urysohn subfamiliye.
Jcountable® CDVSeDVAe S*AT € D' : Ae T*andM(T) € §*).

Proof. (i) < (ii) Follows from Theorem 3.4.

(i) = (iii) Use Corollary 3.1(i) and Lemma 3.1 to justify that 1st countability
of (CL(X), t*) implies separability of(. Let E be a countable dense subsetxof
Then the collectiork of the closures of finite subsets Bfis countable and dense in
(CL(X), t%). To see density take some nonemplty= (U, ..., U,)s € B*. Since
® is a Urysohn family (cf. Theorem 3.4), we can fifide © with M(T) € S* and
U NM(T) # @foralli < n.Pick somex; € ENU; N M(T) for eachi < n.
Then by Lemma 2.1(ii)F = |, {xi} € $*,s0F € ENU. Thus(CL(X), t*) is
a separable metric space and hence 2nd countable.

(i) = (iv) Regularity of (CL(X), t*) implies its T;-ness (see the proof of
Theorem 3.4 (iii)= (iv)). Further, if 8" C 8* is a countable base ¢CL(X), t*)
(cf. [18], Theorem 1.1.15), defin®’ as the subcollection dd consisting of the
elements appearing in the representation of member8’ofJsing that® is a
Urysohn family, one can easily justify that’ satisfies (iv).

(iv) = (i) It is clear by Theorem 3.4 that the hyperspac@&sis-urther, ifX had
a countable bas@, then{(Ug, ..., U,)s € B*: Uy, ..., U, € B,5 €D, n € w}
would be a countable base @EL(X), t*) and the Urysohn Metrization Theorem
would yield (i). Hence it remains to show th@t = {M(T)c T e®}U{X}isa
countable base faiX, ;). Indeed, ifx € U € 15 and (without loss of generality)
U # X, then by Theorem 3.2 we get &nc © with U® € S* and{T}_ﬁM(S)C 7% .
PickaT € ®'suchthat/® € T* andM(T) € S* (from (iv)). Then{x}NM(T) >
X} N M(S)C # ¢, sox € M(T)C. Finally, U¢ € T* implies by Lemma 2.1(i) that
U® C M(T) C M(T), whenceM(T)  C U. O

4. Topological Games and Hyperspace Topologies

Let (Y, 8) be a topological space with an open b&eThestrong Choquet game
onY is played as follows: two players and B.ta take turns in choosing objects in
(Y, B); B starts by pickingxg, Vo) from

EY,B)={(x,V)eY xB:xeV}

anda responds by som&y € B with xg € Uy C Vy. The next choice of is a
couple(xy, V1) € (Y, B) such thatry; € Vi C Ug and thenx picks al; € B8
with x; € Uy C V etc. Playew wins the run(xo, Vo), U, ..., (x5, V,), Up, ...
provided

Vo=V, #9.

PEW PEW
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otherwiseg wins. Atactic ([10]) for « (resp. forg) is a functiono: (Y, B) — B
(resp.o: 8 — &, B)) suchthatt € o(x, V) C V forevery(x, V) € (Y, B)
(resp. such that for evely € B, the second componentefU) is a subset of/).

A winning tactic(abbr. w.t.) fora (resp. forg) is a tactico such thakx (resp.g)
wins every run of the game compatible withi.e. such that/,, = o (x,,, V,,) (resp.
(xpt1, Vp1) = o (Up)) for all p € w. We will say thatY is stronglyx-favorable
(resp.strongly g-favorablg provideda (resp.f) possesses a winning tactic in the
strong Choquet game.

The so-calleBanach—Mazur gamg10, 38]) is played similarly as the strong
Choquet game, except thatchooses only a nonempty, € 8 and playerx a
nonemptyU, € B, with the same inclusion¥, C U, C V,;1 and rules as in
the strong Choquet game. We can analogously define tactics and winning tactics
for «, B8, respectively in the Banach—Mazur game. Finally, we will say thas
a-favorable(resp.g-favorable provideda (resp.8) possesses a winning tactic in
the Banach—Mazur game.

The notion of ‘winning tactic’ was used by Choquet ([10, Chapter 8]), while
Galvin and Telgarsky ([21]) uses the term ‘stationary winning strategy’. The reason
for this special terminology is that we require that plageremembers only the
most recent move oB when deciding what to do next, instead of remembering
all the previous moves g8 made so far (in this latter case we would sahas a
‘winning strategy’). It is not automatic that an arbitrary winning strategyfaan
be reduced to a winning tactic, though for special spaces — including the metrizable
ones —this is the case (see [21, Corollary 11] for the Banach—Mazur game, and [10,
Theorem 8.7] for the strong Choquet game). Notice thapftine reduction from
a winning strategy to a winning tactic is possible in both the Banach—Mazur game
and the strong Choquet game (see [21] on this).

For further information about topological games cf. [43] or [27]. Now recall
some fundamental results about these games:

THEOREM A. A topological spacé’ is not3-favorable iffY is a Baire spacéi.e.
countable intersections of dense open sets are Jlense

Proof. See [29, Theorem 2] (cf. [38] also) or [22, Theorem 3.16]. O

THEOREM B. A metric space’ is a-favorable iffY contains a dense completely
metrizable subspace.

Proof. By [27, Theorem 8.17())]V is a-favorable iff Y is residual in its com-
pletion, which in turn is equivalent to having a dense completely metrizable sub-
space. |

THEOREM C. A metrizable spac# is not stronglyg-favorable iffY is a heredi-
tarily Baire spaced(i.e. every nonempty closed subspac® if a Baire spacg

Proof. See [14, Théoréme 4.1(b)] or [43, Theorem 1.3]. O
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THEOREM D. A metrizable spac# is stronglya-favorable iffY is completely
metrizable.

Proof. See [10, Theorem 8.7 on p. 136]. O

The Banach—Mazur game was first applied in the hyperspace setting by McCoy
in [36], which was then generalized by the author in [48, 49]. An application of
the strong Choquet game in [50] provided a short proof of the celebrated Beer—
Costantini Theorem on Polishness of the Wijsman topology.

THEOREM 4.1. Suppose thak has property(P) and ® is a weakly Urysohn
family. If (X, t5) is stronglyx-favorable, then so iSCL(X), t*).

Proof. Take a w.t.o: &(X, 1) — 15 for a in (X, t5). Define a tactico*:
&(CL(X), t*) — t* for « as follows: first, for eaclV € t; andA € V~ fix a point
xav € ANV.Then given(A,V) € §(CL(X), t*) whereV = (Vy,..., V,)r €
B*, define

G*(A’ V) = (G(xA,V07 VO N M(S))’ ey O'(XA,V”, Vn N M(S)))S7

wheres is obtained from the Urysohnness®f SinceA € §* C T*, we have that
A e€eo*(A,V) C V. We will show thato* is a w.t. fora in (CL(X), t%).

Suppose thatAg, Vo), Ug, ..., (4,,V,),U,, ... is a run of the strong Cho-
quet game in(CL(X), *) such thatU, = o*(4,,V,) for all p. DenoteU,, =
(U§. ... Un)s, andV, = (Vg', ..., Vii ) r, for appropriateS,, T, € D.

We know thatV .1 C U, hence by Lemma 3.1 without loss of generality we
may assume that, 1 > n, = m, andM(T,.1) N V"™ c M(S,) N U? for all
i <n,. Putn_y=—1.Thenforallp € wandn, 1 <s <n,wehavearun

(a, e VENM(T,), UP N M(Sy), ...,
X, vt VI O M(Tyy)), UPY O M(Spi), -

N

of the strong Choguet game ¥ compatible witho. Therefore there exists some
X5 € Nyeo U N M(S,,4,) forall s € o, wherep, is the uniquep € w such that
Np_1 <S8 KN

LetA = {x, : s € w}and fixp € w. Itis clear thatx; € M(T,1) forall s € w,
hence by (3)A € T, thus,A € V,, for all p € w, which means tha# wins the
run. O

LEMMA 4.1. Suppose thatX, z;) is regular. Then

() X ={{x}: x € X} is aclosed subset ¢CL(X), T*);
(i) XN (W, ..., Uns = XN M) Ne, UD~ = XN (M(S) N, Un* for
all Uy, ..., Uys € B*.

Proof. (i) Let A € CL(X) \ X. Then there exist, y € A with y € {x]". By
regularity of X we can find disjoint/, V € 5 such thatx} ¢ U and{y} Cc V. It
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is not hard to see now that € U~ NV~ c CL(X) \ X thus, CL(X) \ X is open
in (CL(X), %).

(i) If x} € XN (U, ...,U,s then by regularity ofX and Lemma 2.1(i),
x}cM©S)N ﬂl<n U;. Conversely, iflx} e Xn (M(S)N ﬂ,<n U;)~ then clearly
{x} e ﬂ,@ U, furtherx € M(S), and regularity ofX with Lemma 2.1(ii) implies

that{x} e S*. O

We are now prepared to prove the main result of this paper on Polishness of
(CL(X), *). Note that Polishness of various hypertopologies has already been es-
tablished using quite different methods; in this respect we should mention [2, 3, 12,
26] and [34] concerning complete metrizability of certain weak hypertopologies,
further [16] and [3] about complete metrizability of certain (proximal) hit-and-
miss topologies. Our next result characterizes Polishness of hypertopologies with
no additional conditions:

THEOREM 4.2. The following are equivalent:

() (CL(X), t*) is Polish;
(i) (CL(X), t*) is completely metrizable;
(i) (CL(X), t*) is metrizable and X, 1) is stronglya-favorable;
(iv) (CL(X), t*) is T1, ® contains a countable Urysohn subfamily aiid ;) is
strongly«a-favorable.

Moreover, ifX is Ty, the above are equivalent to
(V) (CL(X), t*) is metrizable andX, ts) is Polish.

Proof. (iii) = (ii) Notice that by Corollary 3.1(i)X has property (P) and by The-
orem 3.4/9 is a Urysohn family. Therefore Theorem 4.1 implies tt@L(X), t*)
is stronglya-favorable, which implies (ii) by Theorem D.

(i) = (ii)) Only strong «-favorability of X needs some comments. It follows
from Corollary 3.2 thaf is regular so by Lemma 4.1(iX is a completely metriz-
able subspace ofCL(X), *). Consequently, by Theorem Dc is strongly -
favorable. DenoteB* = {UN X: U € B8*} and lets: &(X, 8*) — B* be a
w.t. for o in the strong Choquet game. Define a taetic€ (X, 7;) — 75 for o in X
as follows: given(x, U) € &(X, ts) write 6 ({x}, XNU)=XNW,,...,U)s
and puto (x, U) = M(S) N ﬂ,@ i

Then by Lemma 4.1(ii)x € o(x, U) C U. We will show thato is a w.t. fora
in X: let (xo, Vo), Uo, ..., (x,, V},), Up, ... be arun of the strong Choquet game
in X such that/, = o (x,, V,) forall p € . Then({xo}, X N V5), X NU;, ...,
({x,), XN V), XN U,,...,isarun of the strong Choquet gameXrcompatible
with &, which follows by Lemma 4.1(ii). Accordingly, there exists are X with
{x} €N,en V, » Whencex € N, V, anda wins.

(i) = (v) It suffices to show thak is separable and metrizable, since then
(v) follows by (iii) and Theorem D. Indeed, in our caXeis T3 by Corollary 3.2
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and hence metrizable by Lemma 4.1(i); furth€ris separable by Theorem 3.5 and
Lemma 4.1(i).

(v) = (iii) follows from Theorem D and the remaining implications are either
trivial or follow from Theorem 3.5. O

As for a-favorability of hyperspaces we have:

THEOREM 4.3. Suppose thaX has propertyP)and?® is a weakly quasi-Urysohn
family. If (X, 1;) is a-favorable then so i$CL(X), t*); in particular, (CL(X), t*)
is a Baire space.

Proof. We can adapt the proof of Theorem 4.1 using the Banach—Mazur game
instead of the strong Choquet game, using a weakly quasi-Urysohn family instead
of a weakly Urysohn family and omitting thes and A’s from the argument. 0O

Observe, that we cannot use an argument similar to that of in Theorem 4.2
to characterizex-favorability of the (metrizable) hyperspace, since it would re-
quire thata-favorability be closed-hereditary, which is not the case (cf. [45, Re-
mark 2.4(2)]). This is not the case in the hyperspace setting either, otherwise
favorable hyperspaces would be hereditarily Baire; however we have the following

THEOREM 4.4. There exists a separable, hereditarily Baisefavorable metric
spaceX such thatCL(X) with the Wijsman topologyy is a-favorable but not
hereditarily Baire.

To prove this theorem we need some auxiliary material first. A consequence
of a theorem of A. Bouziad ([6, Theoréme 2.1]) claims that if there is a perfect
mapping from a regular spadeto a metric hereditarily Baire spaée thenY is a
hereditarily Baire space. We have the following variation of this theorem:

THEOREM 4.5. Let f: Y — Z be a perfect mapping from a Tychonoff spate
to a 1st countable I3, hereditarily Baire space&. ThenY is a hereditarily Baire
space.

Proof. We can adapt the proof of Theorem 3.7.26 in [18]. In fact, there exists
a homeomorphic embedding Y — K of Y into a Hausdorff compact spade.
Thenthe diagonaf Ag: Y — Z x K is a perfect mapping (by [18, Theorem 3.7.9])
and a homeomorphic embedding; hedtes homeomorphic to a closed subspace
of Z x K. Now it suffices to use Theorem 12 of [7] claiming, that the product
of a 1st countable, regular hereditarily Baire space and a regular compact space is
hereditarily Baire. O

Proof of Theorem 4.4_et X be the separable, hereditarily Baitefavorable
metric space from [1] having non-hereditarily Baire square. Then by Theorem 4.3,
(CL(X), ) is a-favorable; further, it is metrizable, sincg is separable ([3,
Theorem 2.1.5]).
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On the other handCL(X), ty) is not hereditarily Baire. Indeed, notice that
Y = X2\ {(x,x) : x € X} is not hereditarily Baire, sincfx,x) : x € X} is
hereditarily Baire anck? is not. Further, ifZ stands for the two-element subsets of
X endowed with the relative Wijsman topology, then the natural mapping ffom
ontoZ is a perfect mapping. Hence by Theorem 45s not hereditarily Baire and
neither is(CL(X), tw), sinceZ is Gs in (CL(X), tw) (see [14, Proposition 1.2]n

5. Applications

As for (strong)a-favorability of hypertopologies we have the following three the-
orems. The first two extend Theorem 4.3 of [48] and the third one generalizes
Theorem 3(ii) of [49]:

THEOREM 5.1. Suppose thatX, 7) is a(strongly) a-favorable weaklyR, topo-
logical space andA is a weakly quasi-Urysohfresp. weakly Urysobhnfamily.
Then(CL(X), ™) is (strongly) a-favorable.
Proof.See Remark 3.1(ii), Remark 3.2(ii) and Theorem 4.1 (resp. Theorem 4.3).
O

THEOREM 5.2. Suppose thatX, U) is a (strongly) «-favorable uniform space
and A is a uniformly weakly quasi-Urysohfresp. uniformly weakly Urysohn
family. Then(CL(X), t*) is (strongly) a-favorable.
Proof. See Remark 3.1(ii), Remark 3.2(i) and Theorem 4.1 (resp. Theorem 4.3).
O

THEOREM 5.3. Suppose thatX, d) is a(strongly) «-favorable metric space and
A, contains the singletons. Th€BL(X), tweaw IS (strongly) «-favorable.
Proof.See Remark 3.1(iii), Remark 3.2(i) and Theorem 4.1 (resp. Theorem 4.3).
|

THEOREM 5.4. Let(X, 1) (resp.(X, U)) be a topologicalresp. uniforn space
and A c CL(X). The following are equivalent:

() (CL(X),t™) (resp.(CL(X), 1)) is Polish;
(i) (CL(X), t™") (resp.(CL(X), t+1)) is completely metrizable;
(iii) (CL(X), ) (resp.(CL(X), t™1)) is metrizable and X, 7) (resp.(X, U)) is
strongly«a-favorable;
(iv) (CL(X), ") (resp.(CL(X), t™1))is Ty, A contains a countabléuniformly)
Urysohn subfamily andX, ) (resp.(X, U)) is strongly«-favorable.

Moreover, if(X, t) (resp.(X, U)) is Ty, the above are equivalent to

(V) (CL(X), ™) (resp.(CL(X), t1)) is metrizable and X, ) (resp.(X, U)) is
Polish.

Proof. See Theorem 4.2. O
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The following theorem generalizes Theorem 3.6. and Theorem 4.2 of [26]:

THEOREM 5.5. Let (X, d) be a metric space and; contain the singletons. The
following are equivalent;

() (CL(X), tweaw is Polish;

(i) (CL(X), tweaw is completely metrizable;
(i) (CL(X), tweaw is 2nd countable andX, d) is completely metrizable;
(iv) (CL(X), tweaw is 2nd countable andX, d) is Polish.

Proof. Observe that ifA; contains the singletons, théGL(X), tyear is 71 and
by Remark 2.1(iii) it is completely regular as an initial topology; hence the theorem
follows from Theorem 3.5 and Theorem 4.2. m|

Note thatH (A, B) = maxXe(A, B), e(B, A)} is the so-calledHausdorff metric
betweenA, B € CL(X). Confer Theorem 3.3 and Theorem 4.3 of [26] with:

COROLLARY 5.1. Let(X, d) be a completely metrizable space. Kgtand A,,
respectively be separable with respect to the induced Hausdorff metricaand
contain the singletons.

Then(CL(X), tweaw is @ Polish space.

Proof. Let ; C A; be countable and dense 4 with respect toH for each
i = 1, 2. SinceA; contains the singletons, it is easy to show tKais separable;
let B8 be a countable base af. Then the collection of all

MU N (D¢ A)Ne (. B))

i<n j<m
with Uy, ---, U, € B, A; € Q1 andB; € Q, forall j <m andm,n € w, forms a
countable base faf,eaxand Theorem 5.5 applies. O
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